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This paper reports the results of lattice Boltzmann simulations of the rotation
behaviour of neutrally buoyant spheroidal particles in a three-dimensional Couette
flow. We find several distinctive states depending on the Reynolds number range and
particle shape. As the Reynolds number increases, rotation may change from one
state to another. For a prolate spheroid, two rotation transitions are found. In the
low Reynolds number range 0 < R < R1 ≈ 205, the prolate spheroid rotates around
its minor axis, which is parallel to the vorticity vector of the flow. The rate of rotation
is a periodic function of time. In the intermediate Reynolds number range R1 < R <

R2 ≈ 345, the prolate spheroid precesses about the vorticity direction with a nutational
motion. The angular velocities are periodic functions of time. The mean nutation angle
between the major axis and the vorticity increases monotonically as the Reynolds
number increases. In the high Reynolds number range R2 < R < 467, the prolate
spheroid rotates with a constant rate around its major axis, which is parallel to
the vorticity. For an oblate spheroid, only one rotation transition is observed. In the
lower Reynolds number range 0 < R < R′

1 ≈ 220, the oblate spheroid finally spins
with a constant rate around its minor axis (the symmetric axis of the revolution),
which is parallel to the vorticity vector. In the higher Reynolds number range
220 ≈ R′

1 < R < 467, the oblate spheroid still spins with a constant rate around
its minor axis but there is a finite inclination angle between the minor axis and the
vorticity vector. This angle increases as the Reynolds number increases.

1. Introduction
Suspensions of solid particles in fluids are ubiquitous in many industries, such

as printing and paper-making, petroleum, bioengineering, pharmaceuticals and food
processing. In the paper-making industry, a suspension consisting of fillers, pigments
and binders is coated on the paper surface to improve the smoothness and optical
properties of the paper. These filler particles in the suspension are subjected to a
shear force in a coater. The shear flow affects the distribution of the particles due to
their motion and determines the quality of the paper surface to some extent. Most
particles in realistic situations are non-spherical, or even irregular. This complex
geometry strongly affects the particle–fluid and particle–particle interactions and thus
complicates the structures of both the flows and particle clusters. Therefore, an
understanding of the dynamic behaviour of particulate suspensions of non-spherical
particles in shear flows is important for various engineering applications.
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The motion of non-spherical particles in a shear flow at very low Reynolds numbers
has been studied for a long time (cf. e.g. the review by Leal 1980). Jeffery (1922)
investigated the rotational behaviour of a single ellipsoid in a simple shear flow at
zero Reynolds number. The inertial effect was completely neglected in Jeffery’s study,
which used the quasi-steady approach by assuming that the pressure is the only
driving force for rotation. Jeffery obtained a set of differential equations for the
rotation of an ellipsoid with analytic solutions depending on the initial conditions.
Jeffery therefore concluded that the rotation of an ellipsoid is indeterminant. In
order to definitively determine the final orbit of an ellipsoid, Jeffery hypothes-
ized that “The particle will tend to adopt that motion which, of all the motions
possible under the approximated equations, corresponds to the least dissipation of
energy.”

Jeffery’s (1922) analytic work has had a strong influence and has spawned numerous
experimental and theoretical research efforts. Taylor (1923) reported that a prolate or
oblate spheroid in a Couette flow of an extremely viscous fluid adopted the orbit of
minimum energy dissipation, and thus confirmed Jeffery’s hypothesis experimentally.
However, in experimental work on a single rods or discs in both Couette and Poiseuille
flows, Karnis, Goldsmith & Mason (1963, 1966) conclusively showed that the inertial
effect at Reynolds number R ∼ O(10−3) is sufficient to force non-spherical particles in
a shear flow to a final orientation that is different from Jeffery’s hypothesis. Theoretical
studies were also made to understand the effect of inertia of non-spherical particles
on their motion in fluids. Although the experimental results of Karnis et al. (1963,
1966) were qualitatively confirmed by the analysis of Harper & Chang (1968) and
Leal (1975), their analysis was a generalization of Saffman’s (1965) work on the effect
of inertia on a sphere in Poiseuille flow, and was based on a perturbation theory
limited to Reynolds numbers R < 1. Therefore their analysis cannot be applied to
large Reynolds number cases.

Recently, there has been an increase in the study of particulate suspensions with
use of direct numerical simulations. Feng & Joseph (1995) simulated the dynamic
behaviour of a single ellipse in a planar Couette flow at the Reynolds number R = 1 by
using a finite element method. Their numerical results were essentially consistent with
Jeffery’s theory. More recently, with a lattice Boltzmann method, Ding & Aidun (2000)
simulated a single circular cylinder (with 0 < R � 320) and elliptical cylinder (with
5 � R � 50) in planar Couette flow, as well as a single oblate spheroid (5 � R � 90)
with its diameter fixed in the direction of the flow vorticity vector in three-dimensional
Couette flow. Their numerical findings for a circle suspended in planar Couette flow
have been observed experimentally by Zettner & Yoda (2000, 2001). Despite all
the progress that has been made in the area, for finite particle Reynolds number,
when the nonlinear inertial effect becomes important, the dynamics of non-spherical
particulate suspensions, even the simplest case of a single particle in shear flows, is
not well understood. Essentially, there are neither experimental nor theoretical results
available for a non-spherical particulate suspension in a three-dimensional Couette
flow at sufficiently large Reynolds numbers.

The present work investigates the rotational behaviour of a non-spherical particle
in a three-dimensional Couette flow at particle Reynolds numbers up to 467 by using
a lattice Boltzmann equation (LBE) with fifteen discrete velocities (the D3Q15 model).
Within this range of Reynolds numbers (0 < R � 467), we find that the rotation of a
spheroid exhibits several distinctive states depending on the Reynolds number range
and particle shape. As the Reynolds number changes, the rotation transitions from
one state to another.



Rotation of a spheroid in three-dimensional Couette flow 203

The remainder of this paper is organized as follows. Section 2 gives a concise
description of the lattice Boltzmann method for fluid flows. Sections 3 and 4 present
the numerical results for a single prolate and oblate spheroid in three-dimensional
Couette flow, respectively. The rotational behaviour of these non-spherical particles is
investigated. In § 5 the relative viscosities of a single particle with or without rotational
constraints are computed to test the validity of Jeffery’s ‘minimum energy dissipation’
hypothesis at a finite Reynolds number. Section 6 contains discussion and conclusions.

2. Simulation method
The lattice Boltzmann equation (McNamara & Zanetti 1988; Qian, d’Humières

& Lallemand 1992; Chen, Chen & Matthaeus 1992; He & Luo 1997a,b; Luo 1998,
2000) has been successfully applied to simulate particulate suspensions in flows at
finite Reynolds numbers (Ladd 1994a,b; Koch & Ladd 1997; Aidun, Lu & Ding 1998;
Aidun & Qi 1998; Qi 1997a,b, 1999, 2000; Qi & Luo 2002). The lattice Boltzmann
equation is a special finite difference form of the Boltzmann equation (He & Luo
1997a,b; Junk & Klar 2000; Junk 2001). The particle velocity space is discretized and
reduced to a small set of discrete velocities. The spatial discretization is coupled to
the temporal discretization and the discrete velocity set such that the physical space
becomes a highly symmetric discrete lattice space. The lattice Boltzmann equation
with the single relaxation time approximation (Bhatnagar, Gross & Krook 1954) is
used here. The moving boundary conditions and calculations of hydrodynamic forces
on a solid particle were reported in the articles by Ladd (1994a,b), Aidun et al. (1998)
and Qi (1999, 2000), and will not be repeated here. The same methods are used in
this study.

We consider the ellipsoid particle described by

x ′2

a2
+

y ′2

b2
+

z′2

c2
= 1, (2.1)

where a, b and c denote the lengths of three semi-principal axes, and (x ′, y ′, z′)
denotes the body-fixed coordinate system, as opposed to the space-fixed coordinate
system (x, y, z). The polar angle between the vorticity vector (z-axis) and the z′-axis of
the ellipsoid is θ and the angle between the (x, z)-plane and the (x ′, z)-plane is φ if the
body-fixed coordinate system (x ′, y ′, z′) initially overlaps the space-fixed coordinate
system (x, y, z). The rotational angle about the z′-axis is ψ . The stream direction of
the Couette flow is along the y-direction, with the shear gradient imposed in the
x-direction and the flow vorticity along the z-direction. The mesh of the simulation
box is denoted by (Nx, Ny, Nz). Two walls located at x = 0 and x = Nx + 1 move in
opposite directions with speed U as shown in figure 1. Periodic boundary conditions
are applied in both the y- and z-directions. The particle Reynolds number is defined
by

R =
4Gc2

ν
, (2.2)

where shear rate G = 2U/Nx , c is the length of the semi-major axis and ν is kinematic
viscosity. U � 0.1 is used for all the cases to ensure the validity of Galilean invariance
in the simulations.

3. Rotation of a prolate spheroid
To study the dynamic rotational behaviour of a neutrally buoyant prolate spheroidal

particle in a sufficiently large Reynolds number range, we conducted a number of
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Figure 1. The configuration of the Couette flow. The two walls (arbitrarily scaled) at x = 0
and x = Nx + 1 move at velocity U in opposite directions. The vorticity vector of the flow is
in the z-direction. The z′-axis is the revolution axis of the spheroid.

R (Nx,Ny,Nz) (a, b, c) ν

32 64, 64, 64 8, 8, 16 0.1
128 64, 64, 64 8, 8, 16 0.025
170 96, 96, 96 12, 12, 24 0.0282353
200 96, 96, 96 12, 12, 24 0.024
220 96, 96, 96 12, 12, 24 0.021818
240 96, 96, 96 12, 12, 24 0.02
280 112, 112, 112 14, 14, 28 0.02
320 112, 112, 112 14, 14, 28 0.0175
350 112, 112, 112 14, 14, 28 0.016
400 128, 128, 128 16, 16, 32 0.016
410 128, 128, 128 16, 16, 32 0.0156097

Table 1. Simulation box and particle sizes and kinematic viscosities for different cases.

simulations at R = 32, 128, 170, 200, 220, 240, 280, 320, 350, 400 and 410. The
simulation box size, particle sizes and kinematic viscosities are listed in table 1.

The rotational motion of the particle is affected by both the confinement ratio
r1 = Nx/c and the aspect ratio of the particle r2 = c/a. We fixed the ratios at r1 = 4
and r2 = 2 for most cases in this study. The effect of the confinement ratio on the
rotation behaviour will be discussed at the end of this section.

We observe that the final stage in the rotation of a prolate spheroid exhibits three
distinctive states within the Reynolds number range 0 < R < 467. First, in the low
Reynolds number range 0 < R < 205, the prolate spheroid reaches a steady state in
which it rotates about its minor axis, which is parallel to the flow vorticity vector; thus
the major axis is perpendicular to the vorticity vector, i.e. θ = 90◦. The angular velocity
vector is ω = (ωx, ωy, ωz) = (0, 0, ω), where ω = |ω|, and the rotational rate φ̇ = ωz

is periodic in time. We call this rotation state ‘tumbling’. In this state, the periodicity
of φ̇ monotonically increases as the Reynolds number increases. The angular velocity
ω = ωz =φ̇ is shown as a function of time at different Reynolds numbers in figure 2.
All systems in this low Reynolds number range have a similar rotational behaviour.
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Figure 2. The normalized angular velocity φ̇/G of a prolate spheroid as a function of the
dimensionless time Gt in the low Reynolds number range 0 < R < 205. The LBE simulation
results at R = 0.1, 32, 128, 200 and the analytic result of Jeffery’s theory at R = 0 are shown.
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Figure 3. Transient behaviour of the directional cosines (s1, s2, s3) = (cosβ, cos γ, cos θ )
of the z′-axis for the prolate spheroid at R = 32 with two different initial orientations:
(a) (θ0, φ0, ψ0) = (5.73◦, −87.1◦, 0◦) and (b) (43◦, −58.5◦, 121.5◦).

To demonstrate the dynamic behaviour of the spheroid in the low Reynolds number
range, in figure 3 we show the evolution of the directional cosines (s1, s2, s3) =
(cos β, cos γ, cos θ) at R = 32 for two different initial conditions (θ0, φ0, ψ0) =
(5.73◦, −87.1◦, 0◦) and (43◦, −58.5◦, 121.5◦). For the first initial condition, the major
axis of the spheroid (the z′-axis) is almost parallel to the flow vorticity vector. This
configuration is unstable. The spheroid major axis eventually turns perpendicular to
the vorticity vector and rotates on the shear plane perpendicular to the vorticity vector,
as clearly shown in figure 3. In the final state, angle θ approaches 90◦ (cos θ → 0)
regardless of the initial orientation of the particle. It is clear that the final orientation
of the particle is independent of the initial conditions.
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Figure 4. The polar angle θ of the z′-axis vs. angle φ over one period of the rotation for the
prolate spheroid at Reynolds numbers R = 220, 240, 280 and 320.
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Figure 5. The periodic behaviour of the rotational motion of the prolate spheroid at R = 240
(in the intermediate Reynolds number range). The angular velocity ω = (ωx, ωy, ωz) as a
function of the dimensionless time Gt . The box mesh is (96, 96, 96) for simulation A and
(96, 112, 112) for simulation B while the particle size is (a = 12, b = 12, c = 24).

As the Reynolds number increases beyond the first transition Reynolds number
R1 ≈ 205, the rotation evolves to a different state. In this intermediate Reynolds
number range 205 < R < 345, the major axis of the prolate spheroid (z′-axis) precesses
around the flow vorticity vector with a nutation, i.e. the inclination angle θ between
the major axis and the vorticity varies periodically in time, and is confined between a
minimum θ1 > 0◦ at φ = 0◦ and 180◦ and a maximum θ2 < 90◦ at φ = 90◦ and
270◦. The end of the major or revolution axis of the prolate spheroid appears to
describe a spherical ellipse with its major axis at φ = 90◦ and minor axis at φ = 0◦.
Figure 4 shows the angle θ vs. angle φ for one period of the rotation for R = 220,
240, 280 and 320. In this state, all three components of the angular velocity ω of
the spheroid are not zero and are periodic in time, as shown in figure 5 for the case
R = 240. We simply call this state ‘precessing and nutating’. The mean value of θ

decreases monotonically as the Reynolds number increases. That is, the major axis
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Figure 6. Transient rotational behaviour of the prolate spheroid at R = 350. (a) The direction
cosines (s1, s2, s3) = (cosβ, cos γ, cos θ ) of the z′-axis. (b) The angular velocity ω =
(ωx, ωy, ωz).

of the spheroid more closely aligns itself with the vorticity vector as the Reynolds
number increases.

When the Reynolds number further increases beyond a second transition Reynolds
number (R2 ≈ 345), the prolate spheroid finally rotates at a constant rate around its
major axis which is parallel to the vorticity vector of the flow, i.e. θ = 0◦. We call
this rotation state ‘rolling’. Figure 6(a) shows the dynamic orientational behaviour of
the prolate spheroid at R = 350, a typical case in the high Reynolds number range
R > 345, and figure 6(b) shows the transient behaviour of the angular velocity at the
same Reynolds number.

In summary, we have observed two transitions in the final rotational state for the
prolate spheroid as the Reynolds number continuously varies from 0 to 467. First, in
the low Reynolds number range, the prolate spheroid rotates around its minor axis
which is parallel to the flow vorticity. The first transition occurs at R1 ≈ 205. In the
intermediate Reynolds number range 205 < R < 345, the prolate spheroid precesses
around the flow vorticity vector with a nutation. The inclination angle θ between the
major axis and vorticity vector is between θ1 > 0◦ and θ2 < 90◦, and the mean value of
θ decreases monotonically as the Reynolds number increases. The second transition
takes place at R2 ≈ 345. In the high Reynolds number range 345 < R < 467, the
prolate spheroid finally rotates at a constant rate around its major axis, which is
parallel to the flow vorticity. In short, as the Reynolds number increases, the rotation
of a prolate spheroid transits from a tumbling state to a precessing and nutating
state, then to a rolling state.

It is well known that the confinement ratio r1 will affect the rotation rate of a
particle (Poe & Acrivos 1975). The effects of this ratio on the rotation states are
briefly and qualitatively studied here. Three simulations of a single prolate ellipsoid
are conducted at the same Reynolds number R = 240 with different confinement
ratios of r1 = 3, 4 and 4.5. The results for θ against φ in one period of rotation
are plotted and compared in figure 7. As shown before, the prolate ellipsoid is in a
precessing and nutating state at R = 240 when r1 = 4. As the confinement ratio is
reduced to r1 = 3, the particle rotates in a tumbling state (θ ≈ 90◦). This means that
for the particle to be in a precessing and nutating state requires a higher Reynolds
number for r1 = 3 than for r1 = 4. As r1 increases to 4.5, the particle moves into
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Figure 7. The polar angle θ of the z′-axis vs. angle φ over one period of the rotation for the
prolate spheroid at Reynolds number R = 240 with confinement ratios r1 = 3, 4 and 4.5.

a precessing and nutating state. However, the mean value of θ is less for r1 = 4.5
than for r1 = 4. In other words, the long axis of the particle is closer to the vorticity
direction (θ = 0◦) for r1 = 4.5 than for r1 = 4. These results suggest that as the
confinement ratio is reduced, the transition Reynolds number shifts to a higher value.
Inversely, as the confinement ratio increases the transition Reynolds number shifts
to a lower value. There is no attempt made here to locate the transition Reynolds
number for each confinement ratio due to limits on computational time.

4. Rotation of an oblate spheroid
We have also simulated the case of a single neutrally buoyant oblate spheroid.

In these simulations, the z′-axis is the minor or revolution axis. We find that in a
low Reynolds number range (0 <R < 220) the oblate spheroid eventually spins at
a constant rate around its minor axis, which is parallel to the flow vorticity vector
(θ = 0◦). We call this state ‘spinning’. The results for a typical case of R = 32 in the
low Reynolds number range are shown in figure 8(a) for orientation evolution and
in figure 8(b) for angular velocities. In this case, the simulation box size and particle
sizes are (64, 64, 64) and (a = 16, b = 16, c = 8) respectively.

A transition occurs when the Reynolds number increases beyond the first transition
Reynolds number R1 ≈ 220. When R > 220, the oblate spheroid still spins about
its minor axis (z′-axis), but the minor axis has a finite inclination angle θ with the
vorticity. We call this ‘inclined spinning’. Figure 9(a) shows that after a transient
period of time, the orientation of the oblate spheroid reaches a steady state and
the inclined angle θ at R = 400 is approximately 16.52◦. Figure 9(b) shows that the
angular velocity ω = (ωx, ωy, ωz) becomes a constant vector. The inclination angle θ

increases monotonically as R increases. Although we anticipate that, at a sufficiently
large Reynolds number beyond a second transition Reynolds number R2; the oblate
spheroid would eventually rotate (tumbling) about its diameter which is parallel to
the flow vorticity vector, i.e. θ = 90◦, such very high Reynolds numbers have not been
reached.

To check numerical accuracy, the effect of the size of the particle and simulation box
on results has been investigated for small particles. For instance, the simulation
box size (64, 64, 64) and particle size (a = 10.9, b =10.9, c = 5.45) of an oblate spheroid
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Figure 8. Transient rotational behaviour of the oblate spheroid at R = 32. (a) The direction
cosines (s1, s2, s3) = (cosβ, cos γ, cos θ ) of the z′-axis. (b) The angular velocity ω =
(ωx, ωy, ωz).
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Figure 9. Transient rotational behaviour of the oblate spheroid at R = 400. (a) The direction
cosines (s1, s2, s3) = (cosβ, cos γ, cos θ ) of the z′-axis. (b) The angular velocity ω =
(ωx, ωy, ωz).

were increased to (96, 96, 96) and (a = 16.35, b = 16.35, c =8.175), respectively, while
the Reynolds number is the same at R = 14.85. Thus, U =0.1 for the former simulation
and U =0.066661 for the latter one while ν = 0.1 for both. The results for the
directional cosines are shown in figure 10. The results for these two different box
sizes do not display any significant difference, indicating a good convergence in
the simulations. More importantly, although there are two different wall velocities the
results are almost the same. It appears that the effect of velocity U = 0.1 at
the walls on Galilean invariance is very small. Further, the effect of different size
boxes on rotation of a solid particle is also examined. For the case of R = 240, the
angular velocities of a particle of size (a =12, b = 12, c = 24) in the simulation boxes
A of (96, 96, 96) and B of (96, 112, 112) were compared in figure 5 above; ν = 0.2 for
both the simulations. It is shown that the size has an effect on the results since the
corresponding curves in the two simulations are shifted. However, the precessing and
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Figure 10. The directional cosines of the z′-axis of the oblate spheroid as a function
of time at R = 14.85 for two different sizes of simulation box and particle: (64, 64, 64)
and (a =10.9, b = 10.9, c = 5.45) for simulation A and (96, 96, 96) and (a = 16.35, b = 16.35,
c = 8.175) for simulation B.

nutating behaviour at this Reynolds number is not altered. Thus, the size effect may
cause the transition Reynolds number to move to a higher value. Therefore, final
transition Reynolds numbers should be determined by experiments, not by numerical
simulations alone.

5. Energy dissipation
According to Jeffery’s hypothesis, the final rotational state of a non-spherical

particle is determined by the principle of minimum energy dissipation. To test Jeffery’s
hypothesis, we conducted the following simulations with a single prolate spheroid of
size (a = 6, b = 6, c = 12) with the simulation box (64, 64, 64). We either fix the major
axis of the prolate spheroid to be parallel to the flow vorticity vector (θ = 0◦) so
that the number of rotational degrees of freedom of the spheroid is reduced to one
or allow the spheroid to rotate in the three-dimensional rotational space without any
constraints. We measure the relative viscosity of the system of the suspension:

µr =
〈σ 〉
ρνG

, (5.1)

where 〈σ 〉 is the average shear stress. The prolate spheroid with no constraints evolves
to a final tumbling state around its minor axis, which is along the vorticity direction
in the low Reynolds range (R < 205), i.e. the prolate spheroid rotates about its minor
axis which is parallel to the flow vorticity vector (θ = 90◦). At the Reynolds number
R = 0.1, the relative viscosity is µr = 1.026 for the spheroid with the constraint of
θ = 0◦ and µr = 1.033 for the unconstrained spheroid (with a final orientation
of θ = 90◦). We conducted the same simulation at R = 18, and obtained µr = 1.054
for the constrained system and µr = 1.069 for the unconstrained system. Obviously,
the final rotation state with θ = 90◦ has a higher energy dissipation than that with
θ = 0◦. Therefore, our results at finite Reynolds numbers conclusively invalidate
Jeffery’s hypothesis.
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6. Discussions and conclusions
In the light of the present results, we would like to comment on the recent numerical

work of Aidun et al. (1998) and Ding & Aidun (2000) and the experimental work of
Zettner & Yoda (2001). Aidun et al. (1998) and Ding & Aidun (2000) reported that
when the Reynolds number increased to a critical value, the ellipsoid rotation was
stopped at a critical Reynolds number Rc due to the effects of streamline separation
that generated a negative torque on the non-spherical particles. The critical Reynolds
number in Ding & Aidun (2000) was Rc = 81 for a three-dimensional oblate ellipsoid
and Rc = 29 for a two-dimensional elliptical particle. Their numerical results are
in good agreement with Zettner & Yoda’s experimental results. We repeated the
simulations of Ding & Aidun (2000) and confirmed their findings. However, when a
three-dimensional spheroid is allowed to freely rotate in six-dimensional space, our
results show that the negative torque effect on rotation due to streamline separation
is never strong enough to stop the rotation.

It is important to point out some differences between the present work and that
mentioned above. First, in the simulations of Ding & Aidun the oblate ellipsoidal
particle was forcibly rotated around its major axis, which was fixed in the vorticity
vector direction. This is not the final orientation. Second, although three-dimensional
geometry was used in their simulation, it was essentially in a two-dimensional rotary
space because the major axis was always fixed in the vorticity vector direction
or the z-axis direction. Zettner & Yoda (2001) had a similar experimental setting.
In the present study, the particle is allowed to freely move and rotate in a three-
dimensional setting without any artificial constraint. The final rotation state is fully
determined by the six-dimensional equations of the motion of the particle subjected
to the influence of hydrodynamic forces and the particle finally reaches a natural
orientation.

To the best of our knowledge, there were neither experimental nor theoretical
results available for three-dimensional non-spherical suspensions at sufficiently large
Reynolds numbers in Couette flows. Therefore, we have investigated the rotational
behaviour of a single prolate or oblate spheroid in a three-dimensional Couette flow
for particle Reynolds numbers up to 467. We found that the rotation of a prolate
spheroid has three distinctive states depending on the Reynolds number. In the low
Reynolds number range 0 < R < R1 ≈ 205, the prolate spheroid rotates around
its minor axis, which is parallel to the vorticity vector of the Couette flow; thus
the major axis of the spheroid remains perpendicular to the flow vorticity vector.
At R = R1 ≈ 205 a rotation transition occurs. In the intermediate Reynolds number
range R1 < R < R2 (R2 ≈ 345), the spheroid precesses about the flow vorticity vector
with a nutation (0◦ < θ1 < θ < θ2 < 90◦). At R = R2 ≈ 345, a second transition takes
place. In the high Reynolds number range R > R2, the spheroid rolls about its major
axis which is parallel to the flow vorticity vector.

For an oblate spheroid, we observed that in the low Reynolds number range
0 < R < R1 ≈ 220, it spins about its minor axis at a constant angular velocity, and the
minor axis is parallel to the flow vorticity vector so that the diameter of the oblate
spheroid is perpendicular to the flow vorticity vector. When the Reynolds number
increases beyond a critical value of R1 ≈ 220, the oblate spheroid in its final state still
spins about its minor axis at a constant angular velocity, but the minor axis has a
non-zero inclination angle with the flow vorticity vector.

Finally, we stress that the results of simulations of the final rotational states of a
non-spherical particle in a three-dimensional Couette flow, especially the transitions
between different rotation states, in the present study are the first and have not been
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experimentally observed yet. Our results in the low Reynolds number range confirm
the experimental observations by Karnis et al. (1963, 1966) for R = O(10−3).
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